Decreased calcium influx into the neonatal rat motor nerve terminals can recruit additional neuromuscular junctions during the synapse elimination period.

نویسندگان

  • M M Santafé
  • N Garcia
  • M A Lanuza
  • O D Uchitel
  • I Salon
  • J Tomàs
چکیده

Individual skeletal muscle fibers in newborn vertebrates are innervated at a single endplate by several motor axons. During the first postnatal weeks, the polyneuronal innervation decreases in an activity-dependent process of synaptic elimination by axonal competition. Because synaptic activity depends strongly on the influx of calcium from the external media via presynaptic voltage-dependent calcium channels, we investigate the relationship between calcium channels, synaptic activity and developmental axonal elimination. We studied how several calcium channel blockers affect (after 1 h of incubation) the total number of functional axons per muscle fiber (poly-innervation index) of the Levator auris longus muscle of 6-day-old rats. We determined the poly-innervation index by gradually raising the stimulus amplitude and recorded the recruitment of one or more axons that produced a stepwise increment of the endplate potential.The L-type channel blocker nitrendipine (1 microM) increased the mean poly-innervation index (35.79% +/- 3.91; P<0.05). This effect was not washed out with normal Ringer, although the poly-innervation index returned to the control value when high-calcium Ringer (5 mM) was used. The P-type channel blocker omega-agatoxin-IVA (100 nM) also increased the number of recruitable endplate potentials (27.49% +/- 1.78; P<0.05), whereas N-type channel blocker omega-conotoxin-GVIA (1 microM) was ineffective (P>0.05). However, neither nitrendipine nor omega-agatoxin-IVA modified the poly-innervation index on high-calcium Ringer (P>0.05 in both cases). A more intense inhibition of calcium influx (by the sequential use of two calcium channel blockers) did not recruit any additional silent synapses. Moderately increasing the magnesium ions (by 500 microM) in the physiological solution produces a synaptic recruitment (36.78% +/- 2.1; P<0.05) similar to that with L- and P-type calcium channel blockers incubation. This magnesium effect was not washed with normal Ringer but a Ringer that is high in calcium can reverse it. The recruited endings were identified by selective activity-dependent loading with styryl dyes. Rhodaminated alpha-bungarotoxin-labeled acetylcholine receptors were present in the postsynaptic counterpart. Based on these findings we suggest that, before their complete retraction, functionally silent nerve terminals can be manifested or recovered if calcium influx is reduced by a calcium channel blocker or if external magnesium is increased. The normal activation of this calcium-dependent silencing mechanism during development may be related to the final loss of the supernumerary axons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Can presynaptic depolarization release transmitter without calcium influx?

Recent experimental evidence suggesting that presynaptic depolarization can evoke transmitter release without calcium influx has been re-examined. The presynaptic terminal of the squid giant synapse can be depolarized by variable amounts while recording presynaptic calcium current under voltage clamp and postsynaptic responses. Small depolarizations open few calcium channels with large single c...

متن کامل

In vivo observations of pre- and postsynaptic changes during the transition from multiple to single innervation at developing neuromuscular junctions.

Synaptic rearrangements in developing muscle were studied by visualizing individual neuromuscular junctions in the sternomastoid muscle of living neonatal mice as they underwent the transition from multiple to single innervation. Vital staining of ACh receptors (AChRs) with rhodamine-conjugated alpha-bungarotoxin showed that while junctions were still multiply innervated (usually by two motor a...

متن کامل

The relationship of neuromuscular synapse elimination to synaptic degeneration and pathology: insights from WldS and other mutant mice.

Neuromuscular synapse elimination, Wallerian degeneration and peripheral neuropathies are not normally considered as related phenomena. However, recent studies of mutant and transgenic mice, particularly the Wld(S) mutant-in which orthograde degeneration is delayed following axotomy-suggest that re-evaluation of possible links between natural, traumatic and pathogenic regression of synapses may...

متن کامل

Hebbian mechanisms revealed by electrical stimulation at developing rat neuromuscular junctions.

Synapse competition and elimination are widespread developmental processes, first demonstrated at neonatal neuromuscular junctions. Action potential activity was long shown to exert a powerful influence, but mechanisms and contribution relative to other factors are still not well understood. Here we show that replacement of natural motoneuronal discharge with synchronous activity suppresses eli...

متن کامل

Neuregulin1 displayed on motor axons regulates terminal Schwann cell-mediated synapse elimination at developing neuromuscular junctions.

Synaptic connections in the nervous system are rearranged during development and in adulthood as a feature of growth, plasticity, aging, and disease. Glia are implicated as active participants in these changes. Here we investigated a signal that controls the participation of peripheral glia, the terminal Schwann cells (SCs), at the neuromuscular junction (NMJ) in mice. Transgenic manipulation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 110 1  شماره 

صفحات  -

تاریخ انتشار 2002